On the augmented Lagrangian dual for integer programming
نویسندگان
چکیده
We consider the augmented Lagrangian dual for integer programming, and provide a primal characterization of the resulting bound. As a corollary, we obtain proof that the augmented Lagrangian is a strong dual for integer programming. We are able to show that the penalty parameter applied to the augmented Lagrangian term may be placed at a fixed, large value and still obtain strong duality for pure integer programs.
منابع مشابه
On a Modified Subgradient Algorithm for Dual Problems via Sharp Augmented Lagrangian
We study convergence properties of a modified subgradient algorithm, applied to the dual problem defined by the sharp augmented Lagrangian. The primal problem we consider is nonconvex and nondifferentiable, with equality constraints. We obtain primal and dual convergence results, as well as a condition for existence of a dual solution. Using a practical selection of the step-size parameters, we...
متن کاملExact augmented Lagrangian duality for mixed integer linear programming
We investigate the augmented Lagrangian dual (ALD) for mixed integer linear programming (MIP) problems. ALD modifies the classical Lagrangian dual by appending a nonlinear penalty function on the violation of the dualized constraints in order to reduce the duality gap. We first provide a primal characterization for ALD for MIPs and prove that ALD is able to asymptotically achieve zero duality g...
متن کاملSolving the Hydrothermal Unit Commitment Problem via Lagrangian Relaxation and Augmented Lagrangian
This paper considers the hydrothermal unit commitment problem of power systems with high proportion of hydraulic generation. In this sense, a large-scale mixed-integer nonlinear programming problem for the two day cost-optimal generation of system is developed. The model involves a large number of mixed-integer decision variables and constraints linking time periods and operation units. A Lagra...
متن کاملAugmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملAlternating direction augmented Lagrangian methods for semidefinite programming
We present an alternating direction method based on an augmented Lagrangian framework for solving semidefinite programming (SDP) problems in standard form. At each iteration, the algorithm, also known as a two-splitting scheme, minimizes the dual augmented Lagrangian function sequentially with respect to the Lagrange multipliers corresponding to the linear constraints, then the dual slack varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 150 شماره
صفحات -
تاریخ انتشار 2015